Λύσεις Βιολογίας θετικού προσανατολισμού Πανελληνίων εξετάσεων 2017 – Ημερήσια

Βιολογία Ομάδας Θετικού Προσανατολισμού

ΘΕΜΑΤΑ 2017 ΗΜΕΡΗΣΙΑ ΓΕΛ

ΘΕΜΑ Α

Οι ζητούμενες απαντήσεις, είναι :

A1: δ , Α2 : δ , Α3 : β , Α4 : γ , Α5 : α

ΘΕΜΑ Β

B1

Ι → Α

Ι Ι → Ε

ΙΙΙ → ΣΤ

ΙVB

VZ

VI →Γ

VII → Δ

Β2

Η δοθείσα εικόνα 1 αντιστοιχεί σε προκαρυωτικό κύτταρο.

Αιτιολόγηση : Γνωρίζουμε ότι στα προκαρυωτικά κύτταρα οι διαδικασίες της μεταγραφής ενός γονιδίου που κωδικοποιεί για μόριο mRNA και της μετάφρασης αυτού του μορίου mRNA, συμβαίνουν ταυτόχρονα. Δηλαδή, πριν ολοκληρωθεί η μεταγραφή, έχει ήδη ξεκινήσει η μετάφραση του νεοσυντιθέμενου μορίου mRNA καθώς είναι άμεσα δυνατή η πρόσδεση της μικρής ριβοσωμικής υπομονάδας στην 5′ αμετάφραστη περιοχή του mRNA. Αυτό είναι δυνατό καθώς τα βακτηριακά κύτταρα δεν διαθέτουν πυρηνική μεμβράνη και επομένως το μόριο DNA βρίσκεται στο κυτταρόπλασμα στην περιοχή του πυρηνοειδούς μαζί με τα ριβοσώματα, τα οποία είναι τα ειδικά σωματίδια του κυττάρου, που μαζί με άλλα μόρια (π.χ tRNA , rRNA κ.α ) και αρκετή ενέργεια πραγματοποιούν την διαδικασία της πρωτεϊνοσύνθεσης του κυττάρου.

Β3

Το ιδανικό φάρμακο είναι εκείνο που δεν επιφέρει καμία παρενέργεια στον οργανισμό ενώ ταυτόχρονα θεραπεύει αποτελεσματικά. Το ιδανικό φάρμακο είναι τα αντισώματα.

Τα αντισώματα είναι πρωτεϊνικά μόρια που παράγει ο οργανισμός των θηλαστικών (και των πτηνών) και έχουν την δυνατότητα να συνδέονται εκλεκτικά με ένα ορισμένο τμήμα ( αντιγονικός καθοριστής ) ενός ξένου προς τον οργανισμό σώματος (αντιγόνο).

Το αντιγόνο είναι ξένη προς τον οργανισμό ουσία που μπορεί να προκαλέσει ανοσολογική απόκριση, δηλαδή παραγωγή από τον οργανισμό ειδικών κυττάρων (λεμφοκυττάρων) και κυτταρικών προϊόντων ( π.χ αντισώματα) που θα δράσουν για την εξουδετέρωση του.

Τα αντισώματα παράγονται από τα Β-λεμφοκύτταρα του οργανισμού, κάθε διαφορετικό Β-λεμφοκύτταρο παράγει συγκεκριμένο διαφορετικό αντίσωμα, κατάλληλο για την αναγνώριση και την σύνδεση του μ’ έναν συγκεκριμένο αντιγονικό καθοριστή. Τα αντισώματα που παράγονται από έναν κλώνο Β-λεμφοκυττάρων είναι όλα όμοια μεταξύ τους και ονομάζονται μονοκλωνικά αντισώματα.

Τα μονοκλωνικά αντισώματα βρίσκουν πολλές εφαρμογές ως διαγνωστικά εργαλεία στην Βιολογία και την Ιατρική. Τα μονοκλωνικά αντισώματα δεν μπορούν να παραχθούν σε μεγάλες ποσότητες από τα Β-λεμφοκύτταρα όταν αυτά αναπτύσσονται σε κυτταροκαλλιέργειες in vitro καθώς τα φυσιολογικά Β – λεμφοκύτταρα (κυτταρική σειρά) δεν μπορούν να διαιρεθούν περισσότερες από 50 με 70 φορές, μιτωτικά, στην κυτταροκαλλιέργεια.

Προκειμένου λοιπόν να παραχθούν τα μονοκλωνικά αντισώματα που θέλουμε σε μεγάλες ποσότητες, πρέπει να συντηχθούν τα ειδικά Β-λεμφοκύτταρα που παράγουν το επιθυμητό αντίσωμα (τα κύτταρα αυτά έχουν παραχθεί σε ένα ποντίκι εμβολιασμένο με τον επιθυμητό αντιγονικό καθοριστή, το οποιο πραγματοποιεί πρωτογενή ανοσοβιολογική απόκριση εναντίον αυτού του αντιγονικού καθοριστή) με καρκινικά Β-λεμφοκύτταρα ποντικού (μυέλωμα). Τα κύτταρα που προκύπτουν από την σύντηξη, ονομάζονται υβριδώματα και εμφανίζουν τις δύο ιδιότητες που θέλουμε, να παράγουν τα επιθυμητά αντισώματα και να διαιρούνται για πολύ περισσότερες φορές από 50-70 διαιρέσεις σε κυτταροκαλλιέργεια in vitro. Η τελευταία ιδιότητα είναι ιδιότητα των καρκινικών κυττάρων.

Έτσι προκειμένου να παράγουμε μονοκλωνικά αντισώματα που αναγνωρίζουν και συνδέονται με την χορειακή γοναδοτροπίνη του ανθρώπου ώστε να δημιουργήσουμε ένα ευαίσθητο διαγνωστικό έλεγχο για την εγκυμοσύνη στα πρώτα στάδια της, πρέπει :

α) Να χορηγήσουμε με ένεση σ’ ένα υγιές ποντίκι, ανθρώπινη χορειακή γοναδοτροπίνη, που έχουμε απομονώσει από γυναίκα που είναι έγκυος στα πρώτα στάδια της εγκυμοσύνης. Θεωρούμε δεδομένο ότι το ποντίκι δεν παράγει χορική γοναδοτροπίνη όμοια με του ανθρώπου, ώστε η ανθρώπινη ορμόνη να λειτουργήσει ως αντιγόνο σε αυτό. Επίσης, το ποντίκι που εμβολιάστηκε με την ανθρώπινη ορμόνη, ζει σε στείρο περιβάλλον ώστε να μην παράγει κατά το δυνατό αλλά αντισώματα, διαφορετικά από τα ζητούμενα, ώστε να διευκολυνθούμε στην απομόνωση των κατάλληλων Β-λεμφοκυττάρων

β) 15 μέρες μετά τον εμβολιασμό του, όταν έχει μεγιστοποιηθεί η ανοσολογική πρωτογενής αντίδραση του ποντικιού έναντι της ανθρώπινης ορμόνης, από το ποντίκι αφαιρείται ο σπλήνας του. Ο σπλήνας είναι δευτερογενές λεμφικό όργανο των θηλαστικών, στο οποίο πραγματοποιείται η ανοσολογική απόκριση .Επομένως, στον σπλήνα θα υπάρχουν πολλά Β-λεμφοκύτταρα του ποντικιού που παράγουν το επιθυμητό αντίσωμα.

γ) Από τον σπλήνα του ποντικιού απομακρύνονται τα επιθυμητά Β-λεμφοκύτταρα που παράγουν το επιθυμητό αντίσωμα .

δ) Τα κατάλληλα Β-λεμφοκύτταρα του ποντικιού συντήκονται με καρκινικά Β-λεμφοκύτταρα ποντικιού που αναπτύσσονται σε κυτταροκαλλιέργεια (μυέλωμα). Τα προϊόντα της κυτταρικής σύντηξης ονομάζονται υβριδώματα. Τα Β-λεμφοκύτταρα που παράγουν το επιθυμητό αντισωμα δίνουν στο υβρίδωμα τη δυνατότητα να παράγει το επιθυμητό αντισωμα και τα καρκινικά κύτταρα προσδίδουν αθανασία.

ε) Από τα υβριδώματα που παράγονται κάποια ευαισθητοποιούνται με την ανθρώπινη χορειακή γοναδοτροπίνη, όποτε κλωνοποιούνται (μιτωτικά) και στην συνέχεια κατά ένα μέρος τους διαφοροποιούνται σε πλασματοκύτταρα, τα οποία παραγάγουν και εκκρίνουν μεγάλες ποσότητες του επιθυμητού αντισώματος ενώ τα υπόλοιπα φυλάγονται στην κατάψυξη (-800C) για μεταγενέστερη χρήση.

Τα παραγόμενα από τα κατάλληλα υβριδώματα, μονοκλωνικά αντισώματα, που αναγνωρίζουν την ανθρώπινη χορειακή γοναδοτροπίνη, μπορούν τώρα να χρησιμοποιηθούν ως διαγωνιστικά εργαλεία για τον έλεγχο της ύπαρξης κύησης, κυρίως σε γυναίκες που βρίσκονται στα πρώτα στάδια της εγκυμοσύνης.

Η λήψη αίματος από μια γυναίκα που επιθυμεί να μάθει αν είναι έγκυος και η χρήση των μονοκλωνικών αντισωμάτων για τον ποσοτικό και ποιοτικό προσδιορισμό της χορειακής γοναδοτροπίνης της, μας επιτρέπει να γνωρίζουμε αν είναι έγκυος (εφόσον διαθέτει την ορμόνη στο αίμα της, ποιοτικός έλεγχος) και σε ποια αρχική εβδομάδα της κύησης βρίσκεται (ανάλογα με την ποσότητα της ορμόνης που εντοπίστηκε) .

Β4

Η τεχνολογία του ανασυνδυασμένου DNA έχει δώσει τη δυνατότητα δημιουργίας γονιδιωματικών βιβλιοθηκών των οργανισμών.

Η γονιδιωματική βιβλιοθήκη ενός οργανισμού είναι το σύνολο των βακτηρικών κλώνων ή των φαγικών πλακών που αναπτύσσονται σε στερεό θρεπτικό υλικό (με άγαρ) και κάθε κλώνος φέρει ενσωματωμένο σε ένα μόριο φορέα κλωνοποίησης (πλασμίδιο ή DNA λ-φάγου αντιστοίχως) ένα ορισμένο τμήμα από το DNA του οργανισμού, του οποίου δημιουργούμε την βιβλιοθήκη.

Αυτό το τμήμα του DNA του οργανισμού δότη του γενετικού υλικού (δηλαδή του οργανισμού του οποίου δημιουργούμε την γονιδιωματική βιβλιοθήκη), υπάρχει σε πολλαπλά αντίγραφα σε κάθε κλώνο της βιβλιοθήκης, δηλαδη, το DNA του οργανισμού δότη έχει κλωνοποιηθεί.

Το σύνολο των κλώνων της γονιδιωματικής βιβλιοθήκης φέρει το σύνολο του γονιδιώματος του οργανισμού δότη (συνήθως χωρίς το μιτοχόνδριακό ή/και το χλωροπλαστικό DNA -το τελευταίο μόνο σε περίπτωση φυτικού οργανισμού- αναφερόμενο σε ευκαρυωτικό οργανισμό) σε πολλά διαφορετικά τμήματα σε πολλά αντίγραφα το κάθε τμήμα. Γονιδιωματικές βιβλιοθήκες δημιουργούνται και για προκαρυωτικούς και για ευκαρυωτικούς οργανισμούς.

Γνωρίζουμε ότι τα κύτταρα ενός πολυκυτταρικού οργανισμού φέρουν όλα τα ίδιο γενετικό υλικό (εκείνο το DNA, του ζυγωτού του οργανισμού αυτού) αφού όλα είναι προϊόντα μίτωσης του πρώτου διπλοειδούς κυττάρου (ζυγωτό) αυτού του οργανισμού. ‘Έτσι όλα τα απόγονα κύτταρα από την μίτωση κυττάρων που διαιρούνται, ενός ζωικού οργανισμού, όπως είναι τα μυϊκά και τα ηπατικά, θα φέρουν το ίδιο DNA (θεωρούμε ότι δεν έχουν συμβεί καινοφανείς μεταλλάξεις στα όργανα αυτά).

Η δημιουργία της γονιδιωματικής βιβλιοθήκης ενός οργανισμού περιλαμβάνει τα εξής βήματα:

Α) Απομόνωση κυττάρων του οργανισμού π.χ μυϊκά ή/και ηπατικά.

Β) Απομόνωση του DNA των κυττάρων αυτών, με λύση των κυττάρων.

Γ) Πέψη του DNA των κυττάρων αυτών με μία ορισμένη περιοριστική ενδονουκλέαση π.χ EcoRI. H περιοριστική ενδονουκλέαση αναγνωρίζει και κόβει με συγκεκριμένη φορά, μία ορισμένη δίκλωνη αλληλουχία DNA μήκους 4-8 ζευγών βάσεων. Η EcoRI για παράδειγμα αναγνωρίζει την δίκλωνη αλληλουχία:

5’GAATΤC3’

3’CTTAAG5’

και κόβει μεταξύ του G και του Α με προσανατολισμό 5’→3’ αφήνοντας αζευγάρωτες βάσεις στα κομμένα άκρα (κολλώδη άκρα). Κάθε περιοριστικό ένζυμο δημιουργεί τέτοια κολλώδη άκρα όπως αυτά προκύπτουν με βάση την αλληλουχία αναγνώρισης DNA που αναγνωρίζει αυτό το ένζυμο. Για την EcoRI:

 

5’G 3′           5′ AATΤC3’

3’CTTAA 5′           3′G5’

AATT : κολλώδες άκρο Ι

TTAA : κολλώδες άκρο ΙΙ

Τα κολλώδη άκρα Ι και ΙΙ είναι συμπληρωματικά. Κάθε περιοριστικό ένζυμο κόβει το δίκλωνο DNA σε δυο φωσφοδιεστερικούς δεσμούς 3’→5’ και το ανάλογο πλήθος δεσμών υδρογόνου, σύμφωνα με την αλληλουχία αναγνώρισης του. Η ΕcoRI σπάει 8 δεσμούς υδρογόνου μεταξύ των 4 ζευγών βάσεων Α και Τ.

Δ) Απομόνωση κατάλληλου φορέα κλωνοποίηση, πλασμίδιο ή DNA φαγού λ και πέψη του φορέα κλωνοποίησης με το ίδιο περιοριστικό ένζυμο που χρησιμοποιήθηκε στο προηγούμενο βήμα, ώστε να δημιουργηθούν συμπληρωματικά κολλώδη άκρα .

Ε) Ανάμιξη και ανασυνδυασμός των τμημάτων DNA του οργανισμού δότη και των κομμένων φορέων κλωνοποίησης με την προσθήκη DNA δεσμάσης για την ένθεση – δημιουργία δυο 3′->5′ φωσφοδιεστερικων δεσμών ανα σημειο συνδεσης- ενός τμήματος DNA του οργανισμού δότη σε έναν φορέα κλωνοποίησης.

ΣΤ) Μετασχηματισμός ή μόλυνση βακτηρίων ξενιστών σε υγρή καλλιέργεια με τους πλασμιδιακους φορείς κλωνοποίησης ή τους ανασυνδυασμένους μολυσματικούς φάγους.

Ε) Επίστρωση της υγρής καλλιέργειας σε στερεό θρεπτικό υλικό και τοποθέτηση του τρύβλιου της καλλιέργειας (στέρεο θρεπτικό υλικό) σε κατάλληλο περιβάλλον ανάπτυξης των βακτηρίων ξενιστών, για την ανάπτυξη αποικιών.

Ζ) Διατήρηση της βιβλιοθήκης σε κατάλληλες συνθήκες.

Εφόσον σύμφωνα με τα δεδομένα της εκφώνησης τα ένζυμα και οι τεχνικές που χρησιμοποιούνται είναι ίδια τόσο για τη δημιουργία της βιβλιοθήκης του ηπατικού όσο και του μυϊκού κυττάρου, οι δύο γονιδιωματικές βιβλιοθήκες θα είναι ίδιες, εφόσον δεν φέρουν τα κύτταρα που απομονώσαμε από αυτά τα όργανα μεταλλάξεις.

cDNA βιβλιοθήκη ενός κυτταρικού τύπου ενός ευκαρυωτικού οργανισμού είναι το σύνολο των βακτηριακών κλώνων ή των φαγικών πλακών που αναπτύσσονται σε στερεό θρεπτικό υλικό και φέρουν σε πολλαπλά αντίγραφα, το ολικό ώριμο mRNA του κυτταρικού τύπου με τη μορφή δίκλωνου DNA ενσωματωμένο σε φορείς κλωνοποίησης (πλασμίδια ή DNA λ-φάγου, αντιστοίχως).

Η διαδικασία δημιουργίας της cDNA βιβλιοθήκης ενός κυτταρικού τύπου εν συντομία, είναι:

Α) Απομόνωση κυττάρων του κυτταρικού τύπου του οργανισμού π.χ μυϊκά ή ηπατικά στο κατάλληλο αναπτυξιακό στάδιο στην επιθυμητή φάση του κυτταρικού κύκλου των κυττάρων, στις επιθυμητές συνθήκες για τον οργανισμό.

Β) Απομόνωση του ολικού ώριμου mRNA των κυττάρων αυτών με ήπια λύση των κυττάρων.

Γ) Χρήση του ολικού ωρίμου mRNA ως καλούπι για την σύνθεση cDNA με την βοήθεια της αντίστροφης μεταγραφάσης.

Δ) Δημιουργία δίκλωνου DNA από το cDNA με την βοήθεια της DNA πολυμεράσης.

Ε) Ένθεση του δίκλωνου DNA, μετά από κατάλληλη κατεργασία, σε φορέα κλωνοποίησης.

ΣΤ) Μετασχηματισμός ή μόλυνση βακτηρίων ξενιστών σε υγρή καλλιέργεια με τους πλασμιδιακούς φορείς κλωνοποίησης ή τους ανασυνδυασμένους μολυσματικούς φάγους αντιστοίχως.

Ε) Επίστρωση της υγρής καλλιέργειας σε στερεό θρεπτικό υλικό και τοποθέτηση του τρύβλιου (στέρεο θρεπτικό υλικό) σε κατάλληλο περιβάλλον ανάπτυξης των βακτηρίων ξενιστών.

Ζ) Διατήρηση της βιβλιοθήκης σε κατάλληλες συνθήκες.

Η cDNA βιβλιοθήκη ενός κυτταρικού τύπου διαφέρει ανάλογα με το αναπτυξιακό στάδιο του οργανισμού καθώς και την φάση των κυττάρων του οργανισμού δότη, που έγινε η απομόνωση του ολικού ώριμου mRNA των κυττάρων του, εξαιτίας του γεγονότος ότι, διαφορετικά γονίδια εκφράζονται σε κάθε χρονική στιγμή.

Επίσης, η cNAD βιβλιοθήκες δύο διαφορετικών κυτταρικών τύπων του ίδιου οργανισμού, την ίδια χρονική στιγμή, διαφέρουν εξαιτίας της κυτταρικής διαφοροποίησης, δηλαδή της επιλεκτικής έκφρασης διαφορετικών γονιδίων από κάθε κύτταρο που ανήκει σε διαφορετικό κυτταρικό τύπο του ίδιου οργανισμού, όπως το ήπαρ και οι μύες, ώστε κάθε κύτταρο του κάθε κυτταρικού τύπου, να διαθέτει τις κατάλληλες πρωτεΐνες για την σωστή δομή και λειτουργία του, στο ορισμένο αναπτυξιακό στάδιο του οργανισμού και τις συνθήκες που επικρατούν στον οργανισμό και στο περιβάλλον του, έτσι ώστε να ανταποκριθούν καταλλήλως τα κύτταρα του κάθε κυτταρικού τύπου.

Βεβαίως κάθε κύτταρο ενός οργανισμού παράγει και πρωτεΐνες που είναι αναγκαίες για τις βασικές λειτουργίες του όπως π.χ τις λειτουργίες της μεταγραφής και της μετάφρασης καθώς και της αντιγραφής για τα μυϊκα και τα ηπατικά κύτταρα, τα οποία διαιρούνται. Επομένως, οι cDNA βιβλιοθήκες ενός ηπατικού και ενός μυϊκού κυττάρου αναμένεται να έχουν πολλούς διαφορετικούς κλώνους και ορισμένους κοινούς κλώνους.

ΘΕΜΑ Γ

Γ1

Θεωρούμε ότι η α1 αντιθρυψίνη που αναφέρεται στην εκφώνηση του ερωτήματος είναι η πρωτεΐνη του ανθρώπου που παράγεται στο ήπαρ και η έλλειψη της οδηγεί σε πνευμονικό εμφύσημα.

Γνωρίζουμε ότι μπορούμε σήμερα να δημιουργήσουμε διαγονιδιακά ζώα, δηλαδή ζώα, που με την τεχνολογία του ανασυνδυασμένου DNA, φέρουν ένα ετερόλογο γονίδιο, δηλαδή γονίδιο ενός άλλου είδους όπως παραδείγματος χάριν του ανθρώπου, στο γονιδίωμά τους. Τα ζώα αυτά χρησιμοποιούνται σήμερα ως εργοστάσια παραγωγής ανθρώπινων πρωτεϊνών (gene farming) καθώς είναι δυνατή η έκφραση των ανθρώπινων γονιδίων από τα ζωικά κύτταρα.

Για να εκφράσει ένα γονίδιο πρέπει στα κύτταρα του κυτταρικού τύπου του ευκαρυωτικού οργανισμού οπου θα εκφράζεται αυτό το γονίδιο, να υπάρχουν οι κατάλληλοι μεταγραφικοί παράγοντες οι οποιοι αναγνωρίζουν και συνδέονται με τον υποκινητή του γονιδίου αυτού, δηλαδή του γονιδίου, που εκφράζεται. Μόνο όταν ο σωστός συνδυασμός μεταγραφικών παραγόντων έχει συνδεθεί στον υποκινητή του γονιδίου, είναι δυνατή η σύνδεση της RNA πολυμεράσης με τον υποκινητή του γονιδίου αυτού, ώστε να ξεκινήσει σωστά η μεταγραφή του.

Επίσης δεδομένου ότι ο γενετικός κώδικας είναι σχεδόν καθολικός, δηλαδή όλοι οι οργανισμοί έχουν τον ίδιο γενετικό κώδικα και σε συνδυασμό με το γεγονός πως τα ριβοσώματα των οργανισμών μπορούν να χρησιμοποιηθούν ως θέσεις πρωτεινοσυνθεσης για οποιοδήποτε μόριο mRNA οποιουδήποτε οργανισμού ή ιού. Το ζωικό κύτταρο θα μπορεί να μεταφράσει το mRNA που θα προκύψει από την μεταγραφή του ανθρώπινου γονιδίου, το οποίο είναι ενσωματωμένο κατάλληλα στο γονιδίωμα του ζώου.

Ένα διαγονιδιακό ζώο που θέλουμε να παράγει την ανθρώπινη α1-αντιθρυψίνη στα μαστικά του κύτταρα, θα πρέπει να έχει δημιουργηθεί με τέτοιο τρόπο ώστε το ανθρώπινο γονίδιο που με μικροέγχυση έχει εισέλθει στο γονιμοποιημένο ωράριο του ζώου, να έχει τοποθετηθεί στο γονιδίωμα του ζώου με τέτοιο τρόπο, ώστε να βρίσκεται υπό τον έλεγχο του υποκινητή ενός γονιδίου του ζώου, το οποίο εκφράζεται αποκλειστικά στα μαστικά κύτταρα. Τέτοιο γονίδιο του ζώου, είναι το γονίδιο της καζεΐνης, μιας πρωτεΐνης του γάλακτος του ζώου.

Σύμφωνα με τα δεδομένα της εκφώνησης, το ανθρώπινο γονίδιο της α1-αντιθρυψίνη έχει τοποθετηθεί με το σωστό προσανατολισμό μέσα στο γονίδιο της καζεΐνης του γάλακτος του ζώου, δηλαδή η κωδική αλυσίδα του γονιδίου της α1-αντιθρυψίνης έχει τοποθετηθεί με το 5’ άκρο της προς τον υποκινητή του γονιδίου της ζωικής καζεΐνης και συνεπώς η μη-κωδική αλυσίδα του γονιδίου της α1-αντιθρυψίνης θα έχει το 3’άκρο της προς τον υποκινητή του γονιδίου της καζεΐνης του ζώου. Έτσι , κατά την μεταγραφή του γονιδίου της καζεΐνης του ζώου από την RNA πολυμεράση του ζώου, θα μεταγράφεται η μη κωδική αλυσίδα του γονιδίου της ανθρώπινης α1-αντιθρυψίνης. ‘Έτσι το ζωικό κύτταρο στη συνέχεια, μετά την μεταγραφή του γονιδίου της ανθρώπινης α1-αντιθρυψίνης, θα ωριμάσει αρχικά (αν το ανθρώπινο γονίδιο δεν έχει απομονωθεί από cDNA βιβλιοθήκη ανθρωπίνων ηπατικών κυττάρων) και θα μεταφράσει στη συνέχεια, το κατάλληλο mRNA για την παραγωγή της ανθρώπινης πρωτεΐνης σε πρόδρομη μορφή. Η λειτουργική πρωτεΐνη α1-αντιθρυψίνη του ανθρώπου, θα δημιουργηθεί από τους μετά-μεταφραστικούς μηχανισμούς του ζώου, που δεν διαφέρουν από εκεινους του ανθρώπου καθώς και τα δυο είδη είναι θηλαστικά.

Γ2

Μας δίνεται το δίκλωνο γραμμικό τμήμα DNA:

5’GAATTCCGCAAATTAA

3’CTTAAGGCGTTTAATT5’

To οποίο πέπτεται από το περιοριστικό ένζυμο ΕcoRI . Το περιοριστικό ένζυμο EcoRI αναγνωρίζει την δίκλωνη αλληλουχία

5’GAATTC3’

3’ CTTAAG5’

και κόβει με προσανατολισμό 5’→3’ μεταξύ του G και Α σπάζοντας τους φοσφωδιεστερικούς δεσμούς μεταξύ τους και ταυτόχρονα σπάει και τους 8 δεσμούς υδρογόνου μεταξύ των συμπληρωματικών ζευγών Α και Τ, αφήνοντας μονόκλωνες αζευγάρωτες βάσεις στα κομμένα άκρα (κολλώδη άκρα).

Δηλαδή μετά την επίδραση της EcoRI το δοθέν τμήμα DNA πέπτεται ως εξής, εφόσον φέρει μοναδική θέση αναγνώρισης του περιοριστικού ενζύμου στα αριστερά.

ΕΙΚΟΝΑ Α

5’G3΄            5΄AATTCCGCAAATTAA

3’CTTAA5΄           3′ GGCGTTTAATT5’

3′ TTAA5’ KOΛΛΩΔΕΣ ΑΚΡΟ Ι

AATΤ ΚΟΛΛΩΔΕΣ ΑΚΡΟ ΙΙ

Η τεχνολογία του ανασυνδυασμένου DNA είναι το σύνολο των τεχνικών και των μεθόδων που μας επιτρέπουν την επέμβαση μας στο γενετικό υλικό των οργανισμών.

Μέσω της τεχνολογίας αυτής είναι δυνατή η ένθεση ενός γραμμικού δίκλωνου τμήματος DNA, που έχει κοπεί σε δύο σημεία με την ίδια περιοριστική ενδονουκλέαση, ώστε να φέρει στα δύο άκρα του συμπληρωματικά κολλώδη άκρα. Το τμήμα αυτό μπορεί να ενθεθει σ΄ ένα πλασμίδιο, όταν το πλασμίδιο έχει κοπεί σε μοναδικό σημείο από την ίδια περιοριστική ενδονουκλέαση ώστε να φέρει συμπληρωματικά κολλώδη άκρα στο σημείο τομής.

2017 Blog 8-9-01

Όπως προκύπτει από τις εικόνες Α και Β είναι αδύνατη η έκθεση του τμήματος που μας δίνεται σε πλασμίδιο που έχει κοπεί μία φορά με το ΕcoRI, καθώς το τμήμα που μας δίνεται διαθέτει μόνο μία φορά την αλληλουχία που αναγνωρίζεται από την ΕcoRI και επομένως φέρει ένα μονάχα κολλώδες άκρο στην μία ακριανή πλευρά του (εικόνα Α).

Η ένθεση του τμήματος που μας δίνεται θα ήταν εφικτή με το δοθέν πλασμίδιο, μονάχα αν ήταν δυνατό να προστεθεί το κατάλληλο κολλώδες άκρο, με την βοήθεια κατάλληλου ενζύμου, στο δεξιό άκρο του τμήματος μας.

Γ3

Σύμφωνα με τα δεδομένα της εκφώνησης έχουμε το παρακάτω γενεαλογικό δέντρο:

2017 Blog 8-9-01 extra 1

Η μελέτη της κληρονομικότητας στον άνθρωπο εμφανίζει πολλές δυσκολίες καθώς ο άνθρωπος δεν εμφανίζει τα χαρακτηριστικά του κατάλληλου οργανισμού μοντέλου για την Γενετική. Ο άνθρωπος έχει μεγάλο χρόνο γενεάς, αφήνει λίγους απογόνους και δεν επιδέχεται επιλεκτικές διασταυρώσεις. Επομένως, η μελέτη της Γενετικής του ανθρώπου γίνεται με την δημιουργία γενεαλογικών δέντρων, δηλαδή μιας διαγραμματικής απεικόνισης των γάμων και των γεννήσεων μιας οικογένειας για πολλές γενεές .

Σύμφωνα με τα δεδομένα της άσκησης μια γυναίκα (Γ1) παντρεύτηκε με δύο διαφορετικούς συζύγους στην διάρκεια της ζωής της και απέκτησε με τον καθένα από ένα παιδί .

Η γυναίκα έχει ομάδα αίματος 0, και ο ένας σύζυγος της έχει ομάδα αίματος ΑΒ (Σ1) ενώ ο άλλος έχει ομάδα αίματος Α (Σ2). Το παιδί Π1 έχει ομάδα αίματος 0 και το παιδί Π2 έχει ομάδα αίματος Β.

Γνωρίζουμε ότι η ταυτοποίηση των ομάδων αίματος του ανθρώπου μπορεί να γίνει με τη χρήση κατάλληλων διαγνωστικών εργαλείων, όπως είναι τα μονοκλωνικά αντισώματα.

Ένα άτομο με ομάδα αίματος 0 δεν εμφανίζει κανένα αντιγόνο ούτε Α, ούτε Β στην επιφάνεια των ερυθροκυττάρων του, επομένως κατά την ταυτοποίηση με αντι-Α-αντισώματα και αντί-Β-αντισώματα, δεν θα πραγματοποιηθεί ανοσολογική αντίδραση in vitro, μεταξύ των ερυθροκυττάρων του ατόμου και των αντί-Α και αντί-Β αντισωμάτων.

Ένα άτομο με ομάδα αίματος ΑΒ θα εμφανίζει στην επιφάνεια των ερυθροκυττάρων του και το αντιγόνο Α και το αντιγόνο Β και in vitro, θα εμφανίζει ανοσολογική αντίδραση με τα δυο διαφορετικά είδη αντισωμάτων που αναγνωρίζουν αυτά τα αντιγόνα. Ομοίως σκεπτόμενοι, άτομα με ομάδα αίματος Α αντιδρά ανοσολογικά μόνο με το αντι-Α-αντίσωμα και άτομο ομάδας αίματος Β αντιδρά ανοσολογικά μόνο με τα αντί-Α-αντίσωματα και άτομο ομάδας αίματος Β αντιδρά ανοσολογικά μόνο με το αντι-Β-αντίσωματα.

Γνωρίζουμε ότι το γονίδιο Ι που ελέγχει για τις ομάδες αίματος είναι αυτοσωμικό και έχει τρία πολλαπλά αλληλόμορφα τα ΙΑ, ΙΒ , και i . Τα ΙΑ και ΙΒ είναι συνεπικρατή μεταξύ τους και επικρατούν του i. Tο αλληλόμορφο ΙΑ κωδικοποιεί για μια πρωτεΐνη που μετατρέπει μια πρόδρομη ουσία σε αντιγόνο Α, το οποίο τοποθετείται στην επιφάνεια των ερυθροκυττάρων. Ομοίως το ΙΒ κωδικοποιεί την πρωτεΐνη που σχηματίζει το αντιγόνο Β, ενώ το αλληλόμορφο i δεν κωδικοποιεί για κάποια πρωτεΐνη. Έτσι άτομα με γονότυπο ΙΑ ΙΑ και ΙΑI έχουν φαινότυπο ομάδα αίματος Α. Τα άτομα με το γονότυπο ΙΒ ΙΒ ή ΙΒ i έχουν φαινότυπο ομάδα αίματος Β, άτομα γονότυπου ΙΑΙΒ έχουν φαινότυπο ομάδα αίματος ΑΒ και τέλος τα άτομα γονότυπου ii έχουν ομάδα αίματος 0.

Σύμφωνα με τα παραπάνω και με δεδομένο ότι κάθε γονέας κληροδοτέι ένα πλήρες απλοειδές γονιδίωμα σε κάθε απόγονο του σύμφωνα με τον 1ₒ νόμο του Μendel, ο οποίος αναφέρει ότι κατά τον σχηματισμό των γαμετών, τα αλληλόμορφα γονίδια διαχωρίζονται και κατανέμονται στους γαμέτες τυχαία μεν άλλα ισοπιθανα δε. Η γονιμοποίηση είναι τυχαίο γεγονός.

Έχουμε λοιπόν τις εξής δύο διασταυρώσεις :

  1. Ρ1 : Γ1 Χ Σ1

F1 : Παιδί Α

Δηλαδή : Ρ1 : ii × IA I B

γαμέτες : i, i / IA , IB

γαμέτες/ γαμέτες

IA

IB

i

IAi

IBi

i

IAi

IBi

Oι απόγονοι προκύπτουν σύμφωνα με το αβάκιο του Punnett, το οποίο αποτελεί την διαγραμματική απεικόνιση των γαμετών μιας διασταύρωσης και τρόπου συνδυασμού τους, μεταξύ τους.

Γονοτυπική αναλογία F1 γενεάς: IAi : IBi

Φαινοτυπική αναλογία F1 γενεάς: [ Α ] : [ B ]

Δηλαδή η γυναίκα αυτή μπορεί να αποκτήσει με τον σύζυγο 1, παιδιά με ομάδα αίματος Α ή με ομάδα αίματος Β. Δεν μπορεί να αποκτήσει παιδιά με ομάδα αίματος ΑΒ και παιδιά με ομάδα αίματος 0. Θεωρούμε ότι δεν εμφανίζονται νέες μεταλλάξεις και όλα συμβαίνουν φυσιολογικά.

Β) Ρ2 : Γ1 x Σ2

F1 : Παιδί Β

Δηλαδή : P2 : ii x IAIA ή P2 : ii x IA i

γαμέτες: i , i / IA , IA γαμέτες : i , i / IA , i

F1 :

γαμέτες/ γαμέτες

IA

IA

i

IAi

IAi

i

IAi

IAi

ή

F1 :

γαμέτες/ γαμέτες

IA

i

i

IAi

ii

i

IAi

ii

F1

Γονοτυπική αναλογία : 100% IAi                   ή                  Γονοτυπική αναλογία : ΙΑi : ii

Φαινοτυπική αναλογία : 100 % [A]                  ή                   Φαινοτυπική αναλογία : [Α] : [0]

Επομένως , αναλόγως με τον γονότυπο του συζύγου 2, η γυναίκα αυτή με τον άνδρα αυτό, μπορεί είτε να αποκτήσει μόνο παιδιά με ομάδα αίματος Α ή παιδιά με ομάδα αίματος Α και με ίση αναλογία παιδιά με ομάδα αίματος 0.

Επομένως, με βάση τις παραπάνω, το παιδί Π1 αφού έχει ομάδα αίματος 0 είναι παιδί του Σ2, ο οποίος θα έχει ομάδα αίματος Α και γονότυπο ΙΑi και το παιδί Π2, αφού έχει ομάδα αίματος Β είναι παιδί του Σ1.

Δηλαδή το γενεαλογικό δέντρο είναι :

2017 Blog 8-9-01 extra 2

Γ4

Γνωρίζουμε ότι όλοι οι μικροοργανισμοί όπως και όλα τα έμβια όντα απαιτούν για την ανάπτυξη τους πηγή άνθρακα (C) στο περιβάλλον τους σε κατάλληλες ποσότητες, αφού όλα τα βιολογικά μακρομόρια που δομούν τα κύτταρα (πρωτεΐνες, DNA, RNA, λιπίδια και υδατάνθρακες) αποτελούνται από C. Οι ετερότροφοι μικροοργανισμοί προμηθεύονται από τo περιβάλλον τους τον C, με μορφή οργανικών ενώσεων, ενώ οι αυτότροφοι προμηθεύονται από τον C από τον CO2 της ατμόσφαιρας.

Το βακτήριο E.coli είναι ετερότροφο και απαιτεί ως πηγή άνθρακα είτε γλυκόζη (κατά προτίμηση), είτε λακτόζη, είτε κάποιον άλλον υδατάνθρακα που θα μπορεί να τον μεταβολίσει. Οι Γάλλοι επιστήμονες, Jacob και Monod απέδειξαν ότι το βακτήριο E. coli μπορεί να μεταβολίζει την λακτόζη (δισακχαρίτης αποτελούμενος από γλυκόζη και γαλακτόζη) χάρη στην ύπαρξη στο γονιδίωμα του, του οπερονίου της λακτόζης.

Το οπερόνιο της λακτόζης, απέδειξαν οι Γάλλοι επιστήμονες, ότι αποτελείται από τρία γονίδια που ονομάζονται δομικά ( με τη σειρά: Ζ,Υ,Α) τα οποία βρίσκονται υπό τον έλεγχο του ίδιου υποκινητή. Την έκφραση των δομικών γονιδίων του οπερονίου ελέγχουν δύο ρυθμιστικές αλληλουχίες του. Η μία ονομάζεται χειριστής και βρίσκεται μεταξύ της αλληλουχίας του υποκινητή του οπερονίου, και του πρώτου δομικού γονιδίου Ζ του οπερονίου.

Η άλλη ρυθμιστική αλληλουχία της έκφρασης των δομικών γονιδίων του οπερονίου της λακτόζης, ονομάζεται ρυθμιστικό γονίδιο και βρίσκεται μπροστά από τον υποκινητή του οπερονίου. Το ρυθμιστικό γονίδιο διαθέτει τον δικό του υποκινητή και τις δικές του αλληλουχίες λήξης της μεταγραφής.

Το ρυθμιστικό γονίδιο εκφράζεται συνεχώς και κωδικοποιεί λίγα μόρια μιας πρωτεΐνης, που ονομάζεται πρωτεΐνη καταστολεας. Η πρωτεΐνη αυτή έχει τέτοια στερεοδιάταξη ώστε να αναγνωρίζει την αλληλουχία του χείριστη και να συνδέεται με αυτήν. Η σύνδεση του καταστολέα με τον χειριστή παρεμποδίζει την μεταγραφή των δομικών γονιδίων του οπερονίου της λακτόζης.

΄Όμως, όταν εντός του βακτηρικού κυττάρου υπάρχει λακτόζη, τότε ο ίδιος ο διασακχαρίτης συνδέεται με την πρωτεΐνη καταστολέα σε κατάλληλο σημείο της. Η συνδεση αυτή οδηγεί σε αλλαγή στην στερεοδιάταξη της πρωτεΐνης καταστολέα ώστε αυτή τώρα να μην μπορεί να συνδέεται πλέον με τον χειριστή του οπερονίου. Οπότε, η ίδια η λακτόζη λειτουργεί ως επαγωγέας της έκφρασης των δομικών γονιδίων του οπερονίου, που την καταβολίζει. Δηλαδή, όταν το βακτήριο αναπτύσσεται σε περιβάλλον με μόνη πηγή άνθρακα λακτόζη, εκφράζεται το οπερόνιο της λακτόζης, δηλαδή μεταγράφεται και μεταφράζεται. Με την μεταγραφή του παράγεται ένα μόριο mRNA που φέρει τρεις πληροφορίες για την σύνθεση τριών διαφορετικών πρωτεϊνών (με τη σειρά β-γαλακτοζιδάση, περμεάση, τρανσακετυλάση) κατά την μετάφρασή του, οι οποίες συμμετέχουν στον καταβολισμό της λακτόζης.

Σύμφωνα λοιπόν με τα παραπάνω μπορούμε να ερμηνεύσουμε το δοθέν διάγραμμα, με βάση το οποίο, λίγο πριν την χρονική στιγμή t1, η πηγή άνθρακα του θρεπτικού υλικού έχει εξαντληθεί. Τη χρονική στιγμή t1 προστίθεται λακτόζη στο θρεπτικό υλικό. Μέτα την προσθήκη λακτόζης παρατηρείται σιγμοειδής αύξηση (παρατηρήθηκε εκθετική αύξηση στην παραγόμενη από τα κύτταρα ποσότητα mRNA, μέχρι μία ορισμένη μέγιστη τιμή πέρα από την οποία η ποσότητα του mRNA/βακτήριο δεν αυξάνεται άλλο) στην καμπύλη μεταβολής της συνάρτησης mRNA ανά κύτταρο =f(t).

Μετά την προσθήκη της λακτόζης στην καλλιέργεια την χρονική στιγμή t1, το βακτήριο E.coli άρχισε να εκφράζει το οπερόνιο της λακτόζης και να παράγει το mRNA από την μεταγραφή του, ενώ ταυτόχρονα, επειδή το κύτταρο διαθέτει πλέον πηγή C και επομένως ενέργεια και υλικά για την κάλυψη των αναγκών του και για την σύνθεση των βιολογικών μακρομορίων του, εκφράζει εκτός από το οπερόνιο της λακτόζης και τα υπόλοιπα γονίδια που σχετίζονται με την ανάπτυξη κάθε βακτηρίου για το δεδομένο περιβάλλον όπου αναπτύσσεται. Η παραγωγή των μορίων mRNA θα φτάσει κάποια χρονική στιγμή την μέγιστη δυνατή τιμή πέρα από την οποία δεν μπορεί να αυξηθεί άλλο, αφού αυτές είναι οι μέγιστες ενδογενείς δυνατότητες των βακτηρίων της καλλιέργειας σε αυτό το δεδομένο περιβάλλον.

ΘΕΜΑ Δ

Δ1

Στο φυσιολογικό γονίδιο της αλυσίδας β της αιμοσφαιρίνης Α (HbA) αντιστοιχεί η αλληλουχία ΙΙΙ της δοθείσας εικόνας 4. Στο παθολογικό γονίδιο βς αντιστοιχεί η αλληλουχία Ι της εικόνας 4.

Αιτιολόγηση: Γνωρίζουμε ότι η αιμοσφαιρίνη Α (ΗbA) είναι μία πρωτεΐνη των ερυθρών αιμοσφαιρίων μας, υπεύθυνη για την μεταφορά του οξυγόνου (02 )στους ιστούς. Η αιμοσφαιρίνη Α αποτελείται από 4 πολυπεπτιδικές αλυσίδες 2α και 2β.

Οι αλυσίδες β της ΗbA κωδικοποιούνται από ένα αυτοσωμικό γονίδιο, το γονίδιο β, στο οποίο έχουν βρεθεί περισσότερα από 300 πολλαπλά παθολογικά αλληλόμορφα. Ένα παθολογικό αλληλόμορφο του γονιδίου β είναι το γονίδιο βς το οποίο κωδικοποιεί για τις αλυσίδες βς που συνδεόμενες ανά 2, με 2 αλυσίδες α, δίνουν την μεταλλαγμένη αιμοσφαιρίνη ΗbS, αιτία της ασθένειας της δρεπανοκυτταρικής αναιμίας μίας σοβαρής αυτοσωμικής υπολειπόμενης νόσου.

Η διαφορά της πολυπεπτιδικής αλυσίδας β (φυσιολογική) από της βς (παθολογική ) είναι το 6ο αμινοξύ των πολυπεπτιδίων όπου η β φέρει ως αμινοξύ γλουταμινικό οξύ και η βς φέρει βαλίνη.

Γνωρίζουμε ότι η μεταφορά της γενετικής πληροφορίας από το γονίδιο στην πολυπεπτιδική αλυσίδα γίνεται μέσω της μεταφοράς της πληροφορίας από την μία αλυσίδα του γονιδίου στο κινητό αντίγραφο της γενετικής πληροφορίας, που είναι ένα μονόκλωνο μόριo mRNA, μέσω της διαδικασίας μεταγραφής του γονιδίου. Αντίγραφό λοιπόν της κωδικής αλυσίδας του γονιδίου (που φέρει άμεσα την γενετική πληροφορία του γονιδίου) είναι ένα μόριο mRNA, το οποίο μεταφέρεται στα ριβοσώματα για την παραγωγή του πολυπεπτιδίου, μέσω ενός κώδικα αντιστοίχισης νουκλεοτιδίων mRNA με αμινοξέα πρωτεϊνών (γενετικός κώδικας) χάρη στα μόρια tRNA.

O Γενετικός κώδικας είναι:

α) Τρίλεπτας, τρία νουκλεοτίδια του mRNA κωδικοποιούν ένα αμινοξύ (κωδικόνιο).

β) Συνεχής , κατά την μετάφραση δεν παραλείπεται κανένα νουκλεοτίδιο.

γ) Μη επικαλυπτόμενος, κάθε νουκλεοτίδιο του mRNA που μεταφράζεται ανήκει μόνο σ ένα κωδικόνιο.

δ) Έχει κωδικόνιο έναρξης της μετάφρασης (ΑUG) και κωδικόνιο λήξης της μετάφρασης ένα εκ των (5΄’UAG3 , 5’UAA3, , UGA). Η μετάφραση σταματάει στα κωδικόνια λήξης καθώς δεν υπάρχουν μόρια tRNA με συμπληρωματικά αντικωδικόνια για αυτά τα κωδικόνια.

Σύμφωνα με την διαδικασία της μεταγραφής, το παραγόμενο μονόκλωνο μόριο mRNA, είναι όμοιο σε αλληλουχία και προσανατολισμό, αποτελούμενο βεβαίως από ριβονουκλεοτίδια, με τον ένα από τους δυο κλώνους του γονιδίου. Ο κλώνος αυτός του γονιδίου, ονομάζεται κωδικός και είναι αυτός που φέρει την γενετική πληροφορία όπως και το κινητό αντίγραφο του, το μόριο mRNA. Το μεταγράφημα (mRNA) προέκυψε από την μεταγραφή της συμπληρωματικής προς τον κωδικό κλώνο αλυσίδας του γονιδίου του κυττάρου, η αλυσίδα αυτή ονομάζεται μη κωδική και είναι αυτός ο κλώνος του γονιδίου που χρησιμοποιήθηκε από το ένζυμο της μεταγραφής δηλαδή, την RNA πολυμεράση ως καλούπι για την σύνθεση του mRNA. O κλώνος αυτός δεν φέρει κωδικόνια.

Η RNA πολυμεράση, κατά την μεταγραφή, συνδέεται στον υποκινητή του γονιδίου με την βοήθεια των κατάλληλων μεταγραφικών παραγόντων και ξετυλίγοντας την διπλή έλικα συνθέτει το μόριο RNA με καλούπι της, τη μη κωδική αλυσίδα του γονιδίου. Δημιουργείται έτσι ένα μόριο RNA με προσανατολισμό 5’→3’ , αφού το ένζυμο συνδέει τα ριβονουκλεοτίδια στο αναπτυσσόμενο RNA, με 3’→5’ φωσφοδιεστερικό δεσμό. Επομένως το mRNA που παράγεται κατά την μεταγραφή, έχει προσανατολισμό 5’→3’ με το 5’ άκρο του προς τον υποκινητή του γονιδίου, που μεταγράφεται. Όμοιο προσανατολισμό, έχει και η κωδική αλυσίδα του γονιδίου. Η μη-κωδική αλυσίδα του γονιδίου έχει αντιπαράλληλο προσανατολισμό.

Το αμινοξυ. γλουταμινικο οξύ, κωδικοποιείται απο το κωδικονιο 5’GAG3’ ενώ η βαλινη κωδικοποιείται από το κωδικόνιο 5’GTG3’.

Επομένως στις δοθείσες αλληλουχίες Ι , ΙΙ ,ΙΙΙ της εικόνας 4, προκειμένου να βρούμε την αλληλουχία του φυσιολογικού αλληλόμορφου β και του μεταλλαγμένου αλληλόμορφου βς θα αναζητήσουμε το κωδικόνιο έναρξης 5’ΑΤG3’ σ’ έναν από τους δύο κλώνους, της κάθε αλληλουχίας και για το γονίδιο β θα αναζητήσουμε και ως έβδομο κωδικόνιο το 5’GΑG3’ , ενώ για το παθολογικό αλληλομορφο βς ως έβδομο κωδικόνιο το 5’GTG3’. Γνωρίζουμε ότι κατά την μετα-μεταφραστική τροποποίηση που υφίσταται το παραγόμενο από τη μετάφραση πολυπεπτίδιο του συγκεκριμένου γονιδίου, αφαιρείται η αρχική μεθειονίνη από το αρχικό αμινικό άκρο, δηλαδή το έκτο αμινοξύ, τόσο στο λειτουργικό πολυπεπτίδιο β όσο και στο παθολογικό βς κωδικοποιήθηκε από το έβδομο κωδικόνιο στo mRNA.

Σύμφωνα λοιπόν με τα παραπάνω και τις δοθείσες αλληλουχίες I,II,III της εικόνας 4 παρατηρούμε ότι κωδικονιο έναρξης 5’ΑTG3’ υπάρχει μόνο στην πάνω αλυσίδα, στις αλληλουχίες Ι και ΙΙΙ και στην Ι αλληλουχία το 70 κωδικόνιο είναι το 5’GTG3’ άρα πρόκειται για το γονίδιο βς ενώ στην αλληλουχία ΙΙΙ το 70 κωδικόνιο είναι το GAG3’. Επομένως πρόκειται για το φυσιολογικό γονίδιο β.

Δ2

Η αλληλουχία της εικόνας 4 που απομένει είναι η αλληλουχία ΙΙ και θα μπορούσε να αντιστοιχεί σε γονίδιο που προκαλεί την β-θαλασσαιμία.

Αιτιολόγηση:

Γνωρίζουμε ότι ο γενετικός τόπος του γονιδίου β εμφανίζει περισσότερα από 300 πολλαπλά αλληλόμορφα. Εκείνα τα αλληλόμορφα που φέρουν τέτοια μετάλλαξη, η οποία έχει ως συνέπεια την παντελή έλλειψη της πολυπεπτιδικής αλυσίδας β, είτε έχει ως συνέπεια την μειωμένη παραγωγή της, τα αλληλόμορφα αυτά του γονιδίου β ευθύνονται για την β-θαλασσαιμία μια ασθένεια που εμφανίζει ετερογένεια συμπτωμάτων και προκαλείται από την απουσία ή την μειωμένη παρουσία της ΗbA στα ερυθροκυτταρα του ανθρωπου.

Ένα γονίδιο δεν εκφράζεται όταν δεν είναι δυνατή είτε η μεταγραφή είτε η μετάφραση του. Όταν ένα γονίδιο έχει υποστεί τέτοια μετάλλαξη (μόνιμη αλλαγή στην αλληλουχία του DNA του) που δεν φέρει κωδικόνιο έναρξης 5’ΑΤG3’ , τότε δεν μεταφράζεται το μόριο mRNA που προκύπτει από το γονίδιο αυτό, το οποίο μόριο mRNA αντιστοιχεί στην κωδική αλυσίδα του γονιδίου, όπως αποδείχθηκε στο προηγούμενο ερώτημα.

Παρατηρούμε ότι η αλληλουχία ΙΙ δεν φέρει τριπλέτα 5’ΑΤG3 στον πάνω κλώνο παρά μόνο στον κάτω. Ωστόσο, ο κάτω κλώνος δεν είναι η κωδική αλυσίδα του γονιδίου β, όπως αποδείχθηκε στο προηγούμενο ερώτημα. Συνεπώς, το παραγόμενο κατά την μεταγραφή μόριο mRNA αδυνατεί, να μεταφρασθεί για να παραχθεί το πολυπεπτίδιο β. Συνεπώς, η αλληλουχία β μπορεί να αντιστοιχεί σε ένα παθολογικό αλληλόμορφο γονίδιο β΄ του γονιδίου β, το οποίο παθολογικό β΄ ευθύνεται για την β-θαλασσαιμία.

Παρατηρούμε ότι οι τρεις αλληλουχίες Ι,ΙΙ,ΙΙΙ που μας δίνονται στην εικόνα 4 είναι πολλαπλά αλληλόμορφα του ίδιου γενετικού τόπου. Το αλληλόμορφο β΄( αλληλουχία ΙΙ) εμφανίζει σημειακή μετάλλαξη προσθήκης ενός ζεύγους βάσης ανάμεσα στο 8ο φυσιολογικό ζεύγος βάσεων και στο 90 ζεύγος βάσεων από αριστερά προς τα δεξιά, όπου το ζεύγος C-G έχει προστεθεί στην αλληλουχία ΙΙ .

C

III

G

Η μετάλλαξη αυτή οδηγεί στην κατάργηση του κωδικόνιου έναρξης, που υπάρχει φυσιολογικά στο γονίδιο β, μετά από έξι συνεχόμενες αδενινες, διαβάζοντας από τα αριστερά προς τα δεξιά τον πάνω κλώνο (κωδικό) στις αλληλουχίες Ι και ΙΙΙ που μας έχουν δοθεί και αντιστοιχούν σε τμήμα του 1ου εξωνίου του γονιδίου β της HbA. Αρα το mRNA μόριο που θα προκύψει από την μεταγραφή του γονιδίου β΄(αλληλουχία ΙΙ) δεν θα είναι δυνατόν να μεταφραστεί.

Δ3

α) Η θέση έναρξη της αντιγραφής βρίσκεται στην θέση Υ

β) Συνεχώς αντιγράφεται η αλυσίδα Α.

Ασυνεχώς Αντιγράφεται η αλυσίδα Β.

γ) Το πρωταρχικό τμήμα iii (5’ΑCGCCA3’) συντίθεται πρώτο.

Δ4

Γνωρίζουμε ότι τα άτομα που φέρουν ένα φυσιολογικό β αλληλόμορφο του γονιδίου β που κωδικοποιεί για την πολυπεπετιδικη αλυσίδα β της HbA και ένα παθολογικό υπολειπόμενο β’ ονομάζονται φορείς της ασθένειας της β θαλασσαιμιας και είναι φαινοτυπικά υγιείς σε χαμηλά υψόμετρα και χωρίς έντονη σωματική άσκηση.

Επίσης, ετερόζυγα άτομα με γονότυπο ββς , είναι φορείς της δρεπανοκυτταρικής αναιμίας και είναι φαινοτυπικα υγειή άτομα σε χαμηλά υψόμετρα και χωρίς έντονη σωματική άσκηση.

Η β-θαλασσαιμία, όπως και η δρεπανοκυτταρική αναιμία είναι δύο ασθένειες που ελέγχονται από το ίδιο γενετικό τόπο που εδράζεται σε αυτοσωμικό χρωμόσωμα. Η κάθε μία από τις παραπάνω ασθένειες είναι υπολειπόμενες (χαμηλά υψόμετρα) και ελέγχονται από διαφορετικά παθολογικά αλληλόμορφα του γονιδίου β που ευθύνεται για την σύνθεση των φυσιολογικών β-αλυσίδων της ΗbA.

Έστω λοιπόν ο γενετικός τόπος ζεύγους ομόλογων αυτοσωμικών χρωμοσωμάτων όπου εδράζεται το γονίδιο β με πολλαπλά αλληλόμορφα (πάνω από 300). Το γονίδιο β είναι φυσιολογικό και επικρατεί έναντι των παθολογικών υπολειπόμενων αλληλόμορφων του β’ και του βς. Το αλληλόμορφο β ελέγχει την σύνθεση της φυσιολογικής β πολυπεπτιδικής αλυσίδας της ΗbA, το παθολογικό υπολειπόμενο αλληλόμορφο β’ ελέγχει για την παντελή έλλειψη παραγωγής της β αλυσίδας της ΗbA ή για την μειωμένη παραγωγή της, ενώ το παθολογικό υπολειπόμενο βς ελέγχει για την σύνθεση των βς αλυσίδων της ΗbS που προκαλεί την δρεπανοκυταρική αναιμία. Το αλληλόμορφο β’ ευθύνεται για την β-θαλασσαιμία.

Δηλαδή άτομα με γονότυπο ββ είναι υγιή, άτομα με γονότυπο ββς και ββ’ είναι υγιή και ετερόζυγα (φορείς) της δρεπανοκυτταρικής αναιμίας και την β-θαλασσαιμία αντίστοιχα. Τέλος άτομα με το γονότυπο β΄βς νοσούν από μικροδρεπανοκυτταρική αναιμία και άτομα με γονότυπο β’β’ νοσούν από β- θαλασσαιμία

Έχουμε λοιπόν την διασταυρώση :

P: ββ’ x ββς

Γαμέτες : β, β΄ / β, βς

Oι γαμέτες προκύπτουν σύμφωνα με τον 10 νόμο Mendel δηλαδή το νόμο του διαχωρισμού των αλληλόμορφων γονιδίων, σύμφωνα με τον οποίο τα αλληλόμορφα ενός γονιδίου διαχωρίζονται κατά την πρώτη μειωτική διαίρεση και κατανέμονται τυχαία αλλά ισοπίθανα στους γαμέτες. Η γονιμοποίηση είναι τυχαίο γεγονός.

F1 : Οι απόγονοι προκύπτουν σύμφωνα με το αβάκιο του Punnett, το οποίο αποτελεί την διαγραμματική απεικόνιση των γαμετών και του τρόπου συνδυασμού τους σε μία διασταύρωση.

F1 :

γαμέτες/ γαμέτες

β

β΄

β

ββ

ββ’

βς

ββς

βςβ’

Γονοτυπική αναλογία F1 : ββ : ββ’ : ββς : βςβ’

Δηλαδή από την διασταύρωση αυτή προκύπτουν είτε άτομα με γονότυπο ββ είτε με ββ’ είτε με ββς είτε άτομο που φέρει και τα δύο παθολογικά αλληλόμορφα.

Από τον ιστότοπο βιολογίας: www.nikimargariti.com.

Απάντηση

Αυτός ο ιστότοπος χρησιμοποιεί το Akismet για να μειώσει τα ανεπιθύμητα σχόλια. Μάθετε πώς υφίστανται επεξεργασία τα δεδομένα των σχολίων σας.